Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70 , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s. OPVs based on DCPNT : C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92 V, a short circuit current of 14.5 mA cm-2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light-soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT : C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD-840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT-based D-A-A'-type donors CPNT and DCPNT are potential candidates for high-stability vacuum-processed OPVs suitable for indoor energy harvesting.more » « less
-
Dilute donor organic solar cells (OSCs) are a promising technology to circumvent the trade‐off between open‐circuit voltage (Voc) and short‐circuit current density (Jsc). The origin of hole transport in OSCs with donor concentrations below the percolation threshold is diversely discussed in the community. Herein, both hole back transfer and long‐range hopping (tunneling) are analyzed as possible mechanisms of photocurrent in small molecule dilute donor OSCs using kinetic Monte Carlo (kMC) simulations. In contrast to previous kMC studies, the driving force for exciton dissociation is accounted for. As a study system, nitrogen‐bridged terthiophene (NBTT) molecules in a [6,6]‐phenyl‐C70‐butyric acid methyl ester (PC71BM) matrix are investigated. The simulations show that hole back transfer from the small molecule donor to the fullerene matrix explains the measured concentration dependences of the photocurrents as well as theJscdependence on the light intensity for donor concentrations below 5 wt%. For 5 wt%, distances between NBTT molecules decrease to reasonable ranges that long‐range hopping or tunneling cannot be discounted. Compared with polymer donors, larger hole localization is observed. The results emphasize that the barrier for hole back transfer is not only due to the highest occupied molecular orbital (HOMO) offset, but also by hole localization.more » « less
An official website of the United States government
